

The Future of Energy

Mark Feasel

Chief Commercial Officer & EVP

mfeasel@fce.com

About Me

🎔 @MarkFeasel

in MarkFeasel

• I've been in energy for a LONG time! (picture circa 1990 aboard a nuclear submarine. I was responsible the electrical systems associated with the reactor plant)

- I lead commercial activities for FuelCell Energy
- I am an Adjunct Professor at Northwestern's Institute for Energy and Sustainability
- I spent 20+ years at Schneider Electric building businesses around power management, electric utilities, and microgrid

FuelCell Energy Enabling a World Empowered by Clean Energy

A global leader in manufacturing stationary energy platforms for decarbonizing power and producing hydrogen through our proprietary fuel cell technologies

- Founded in 1969
- NASDAC Listed: FCEL
- ~450 Employees
- Manufacturing sites in US, Canada, and Germany
- 95 Platforms in commercial operation
- Awarded >600 Patents

EXPANDING GLOBAL COLLABORATIONS / SOLUTIONS DELIVERED / PARTNERS / RELATIONSHIPS

Global Track Record of Reliability and Performance

Grid Support with CHP

- 6-month construction
- 20 MW KOSPO site built in 2018
- Power sold to grid
- Heat provided to district heating system
- Easily scalable

Resiliency for Pharma

- 5.6 MW with steam for company campus
- Reliable power solving local grid quality issues
- Immediate savings vs. grid
- Complements ESG goals

Grid Support / Urban Redevelopment

- Power sold to grid
- Enhances resiliency
- Brownfield revitalization
- 15 MW on 1.5 acres
- 12 mo. installation

Fuel Cell / Solar Integration

- Utility-owned, rate-based
- Enhances resiliency
- 2.8 MW fuel cell on ¼ acre - ~23,000 MWh/yr.
- 2.2 MW solar on ~9 acres
 ~3,000 MWh/yr.

More than 12 Million MWh generated¹⁰

¹ As of the October 31, 2020.

The History of Energy

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy

OurWorldInData.org/energy • CC BY

🚫 FuelCell Energy

Energy Transition

FuelCell Energy

The New Energy Landscape

Why is Hydrogen Important?

- Fossil fuels are made up of hydrocarbons
- Ammonia (NH₃) is a fertilizer that is a precursor to 45% of the world's food
- Water the basis of the fluids of all living organisms
- H₂ is at the center of the Energy – Food – Water Nexus

Hydrogen is a Vital Energy Carrier

H₂ Electrolysis Technologies

	Alkaline Electrolysis	PEM Electrolysis	Solid Oxide Electrolysis
	H_2 H_2O Cathode H_2O Anode	Cathode	H_2 H_2O Cathode H_2 Cathode + -
Electrolyte	КОН	Polymer membrane	Ceramic membrane
Circulating medium	КОН	Water	Steam
Materials	Nickel, steel alloys	Uses platinum group metals for electrodes	Nickel, ceramics
Operating temperature	60 – 90°C	RT – 80°C	650 – 900°C
Ability to use waste heat	Ν	Ν	Υ
Efficiency (%)	70	80	90-100
Technical maturity	Industrially mature	Developing	Developing
Reverse (fuel cell) mode	Ν	Ν	Υ

FuelCell Energy Solid Oxide Platform

Solid Oxide Fuel Cell Power Generation Platform

- 250kW Rated Output
- Hydrogen (Also Natural Gas and Biogas)
- High electrical efficiency
- Higher total efficiency in combined heat and power applications

Solid Oxide Electrolysis Platform

- 600 kg/day hydrogen production
- 100% electrical efficiency if waste heat is available (1MW Power Input), 92% (1.1MW Power Input) if not.
- Two modules stack/mechanical BOP and electrical BOP

Global Green Hydrogen Value Chain potential

By 2030, global hydrogen energy demand will increase by about 76 million tons

Global Green Hydrogen Value Chain Components

Production

- Large, centralized projects
- 100s MW to 1GW++

- Australia
- Middle East (Oman, Saudi Arabia, etc)
- North Africa (Tunisia, etc)
- Chile

Transportation

- Ammonia
- Liquid Organic Molecule
- Liquid H2
- Synthetic Methane
- Ammonia tanker
- Custom molecule tanker
- H2 tanker
- LNG tanker

<u>Usage</u>

- Power Production
- Gas pipeline
- Steel
- Fertilizer
- etc
- Europe
- Japan
- Korea
- Taiwan
- Singapore

February 16, 2023:

FuelCell Energy to collaborate with Malaysia Marine and Heavy Engineering to deliver Solid Oxide Electrolyzers for Large Scale Green Hydrogen Production

Nuclear + Electrolysis

converting off peak nuclear power to hydrogen

ELECTROLYSIS WILL BE DEPLOYED IN DISTRIBUTED AND LARGE-SCALE APPLICATIONS

INL/EXT-19-55395 Revision 0

Evaluation of Hydrogen

Energy Storage

Solid Oxide Hydrogen Based Energy Storage

- In addition to operation in electrolysis mode Solid Oxide Fuel Cells (SOFC) can run in fuel cell mode, and can switch between modes, called Reversible Solid Oxide Fuel Cell (RSOFC).
- High efficiency in electrolysis and fuel cell mode enable high round trip efficiency
- RSOFC stacks with hydrogen and water storage are an advanced energy storage approach:
 - High round trip efficiency

FuelCell Energy

- Long duration achieved by adding low-cost hydrogen and water storage capacity, without the need to add more stacks
- Inexpensive water is the only reactant added as an initial fill and regenerated with each discharge cycle

Power input to stack Oxygen Stored water Hvdrogen to Storage Discharging in fuel cell mode: Air Water to storage id Oxid Sta Hydrogen from Storage

Power output from stack

WITH WATER AS THE ONLY STORED REACTANT, HYDROGEN-BASED STORAGE HAS SIGNIFICANT ADVANTAGES FOR LONG DURATION STORAGE

Charging in electrolysis mode:

Solid Oxide - Hydrogen Based Long Duration Energy Storage System

H₂ can be converted back to

- Hydrogen during charge cycle can be used to provide power during discharge cycle or can be exported to hydrogen user
- Geological storage of hydrogen can provide weekly or seasonal storage
- The storage reactant is water, which is regenerated during power generation discharge – does not depend on limited quantities of lithium or cobalt
- Discharge duration is added by adding inexpensive hydrogen and water storage – so cost of storage capacity reduces significantly with longer duration

1MW SOFC/SOEC System

Lithium and Reversible Solid Oxide Cost vs Discharge Duration

FuelCell Energy

RSOFC based on company estimates 1MW projected costs of \$1345/kW plus \$19/kWh Large scale applies 80% scaling power factor to \$/kW cost and assumes geologic H₂ storage, reducing energy cost factor to \$5/kWh

LOW \$/kWh COMPONENT OF HYDROGEN-BASED STORAGE REDUCES COST OF LONG DURATION SYSTEMS

RSOFC Energy Storage System

Discharge duration is increased by adding Hydrogen and water storage – very low \$/kWh cost components

Carbon Capture

US Point-Source Emissions by Sector

FuelCell Energy

Clean Power + Carbon Capture

FuelCell Energy's Carbon Separation & Unique Carbon Capture

Only Platform In The World That Can Capture Carbon From An External Source And Produce Power At The Same Time

Cost analysis of fuel cell carbon capture applied to 550 MW Reference Supercritical PC Plant under DOE DE-FE0026580

Hydrogen co-production could reduce net cost of capture further

Source and for more information: https://www.netl.doe.gov/projects/files/H-Ghezel-Ayagh-FCE-Electrochemical-Membrane-System.pdf Pilot Test of Novel Electrochemical Membrane System for Carbon Dioxide Capture and Power Generation (DE-FE0026580) 2018 NETL CO2 Capture Technology Project Review Meeting, Pittsburgh, PA, August 13-16, 2018

Case Study - CO₂ and the Food Processing Industry

The three major applications for commercial CO₂ are:

- Food
- Beverages
- Dry ice

The Meat Processing industry uses CO₂ to:

- Stun animals
- Keep products cold during transportation
- Cool meat products and equipment during processing

There are few viable alternatives that can easily replace CO₂ for these purposes

The Cost of CO₂ is on the Rise

1. COVID-19

- One-third of the North American supply of CO₂ is derived from the fermentation step of creating ethanol.
- Ethanol production was significantly reduced as demand for fuel dropped when people drove less. In the long term, the rise of hybrid work arrangements and electric vehicle adoption are working against growth of ethanol.
- Vaccine storage and transportation has created a significant new demand for commercial CO₂

2. Price of Natural Gas

- Another major source of CO_2 is derived from the creation of synthetic NH_3 for fertilizer.
- Natural gas is a key competent of the process and some fertilizer plants have shut down due to the high cost creating scarcity in CO₂ markets.

3. Natural Source Contamination

Contaminants ,such as benzine, have been found in some of the largest natural reserves of CO₂ increasing scarcity.

4. Regulation / Policy

• IRA establishes \$85 / ton for sequestration of CO₂, practically creating a market floor.

Case Study – Benefits to Food Processor

Case Study – Port of Long Beach

Carbonate Trigeneration System

2.35 MW Clean and green power – 18 GWh/year

- 1200 tons per year avoided grid CO₂ emissions with natural gas fuel
- 10,000 tons per year avoided grid CO₂ emissions with biogas fuel
- 5 tons per year avoided NOX

0.5 MMBtu/h thermal energy

- 290 tons per year avoided boiler CO₂ emissions
- 200 lbs per year avoided NOX

1270 kg/day hydrogen

- 1700 tons per year CO₂ reduction vs SMR
- 4200 tons per year CO₂ reduction vs SMR with biogas fuel
- 700 lbs per year NOX reduction vs SMR
- 2 million gallons less water used per year vs SMR

1400 gallons / day water

or

Thank You! / Q&A

